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ABSTRACT: With the launch of the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-

DPR) in 2014, renewed interest in retrievals of snowfall in the atmospheric column has occurred. The current operational

GPM-DPR retrieval largely underestimates surface snowfall accumulation. Here, a neural network (NN) trained on data

that are synthetically derived from state-of-the-art ice particle scattering models and measured in situ particle size distributions

(PSDs) is used to retrieve two parameters of the PSD: liquid equivalent mass-weighted mean diameter Dml
and the liquid

equivalent normalized intercept parameterNwl
. Evaluations against a test dataset showed statistically significantly improved ice

water content (IWC) retrievals relative to a standard power-law approach and an estimate of the current GPM-DPR algorithm.

Furthermore, estimatedmedian percent errors (MPE)on the test datasetwere20.7%,12.6%, and11%forDml
,Nwl

, and IWC,

respectively.An evaluation on three case studieswith collocated radar observations and in situmicrophysical data shows that the

NN retrieval has MPE of213%,1120%, and110% forDml
,Nwl

, and IWC, respectively. The NN retrieval applied directly to

GPM-DPRdata provides improved snowfall retrievals relative to the default algorithm, removing the default algorithm’s ray-to-

ray instabilities and recreating the high-resolution radar retrieval results towithin 15%MPE. Futurework should aim to improve

the retrieval by including PSD data collected in more diverse conditions and rimed particles. Furthermore, different desired

outputs such as the PSD shape parameter and snowfall rate could be included in future iterations.
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1. Introduction

Despite being confined to high latitudes and altitudes when

occurring at the surface, snow can be related to approximately

50% by number (Field and Heymsfield 2015) and approxi-

mately 60% by mass accumulation (Heymsfield et al. 2020) of

all precipitation across cold and warm climates. Thus, the ac-

curate retrieval of snow properties is required for an accurate

quantification of the hydrologic cycle. Furthermore, the

quantitative retrieval of snowfall properties is invaluable for

the evaluation of atmospheric numerical model simulations

and their parameterized ice-phase microphysics (e.g., Delanoë
et al. 2011; Stein et al. 2015; Ori et al. 2020). Despite many

advances in satellite remote sensing techniques and sensors in

the past few decades, the uncertainty in the estimate of the

atmosphere’s ice water path remains large, and there is poor

agreement between observational retrievals and numerical

models (e.g., Duncan and Eriksson 2018).

The best way to retrieve global snowfall properties is to use

spacebornemicrowave radars since ground-based observations

are limited to easily accessible locations and passive space-

borne sensors have additional ambiguity in determining the

vertical distribution of hydrometeors. Currently, there exist

two NASA missions with spaceborne radars designed to sam-

ple hydrometeors. The first mission, launched in 2006, is

CloudSat (Stephens et al. 2002), which consists of a highly

sensitive 94GHz nonscanning cloud radar in a 988 inclination
orbit. The second mission, starting in 2014, is the Global

Precipitation Measurement mission (GPM; Hou et al. 2014),

which operates the Dual-Frequency Precipitation Radar

(DPR; 13.5 and 35.5GHz) in a 658 inclination orbit. Both sat-

ellites have collected observations of equivalent radar re-

flectivity factor Ze in a variety of snowfall over their missions.

To retrieve snowfall properties, namely snowfall rate S, the

most common method has been the use of a prescribed power-

law relation between Ze and S that takes the form

Z
e
5aSb . (1)

The parameters in Eq. (1), a and b, are typically derived from

direct comparisons of observed Ze and S (e.g., Langille and

Thain 1951; Boucher and Wieler 1985; Fujiyoshi et al. 1990),

theoretical particle scattering models (e.g., Liu 2008; Kulie and

Bennartz 2009), or a combination of both (e.g., Matrosov 1992;

Chase’s current affiliations: School of Computer Science, and

School of Meteorology, University of Oklahoma, Norman,

Oklahoma.

Corresponding author: Randy J. Chase, randychase@ou.edu

MARCH 2021 CHASE ET AL . 341

DOI: 10.1175/JAMC-D-20-0177.1

� 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/31/21 08:06 PM UTC

https://journals.ametsoc.org/collection/GPM-science
mailto:randychase@ou.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


von Lerber et al. 2017). The direct comparison of observed Ze

and S is sensitive to the radar’s calibration and operating fre-

quency, as well as intrinsic particle properties including the

large observed variability in particle size distributions, crystal

habits, and degrees of riming, making it difficult to find a re-

lation that can be applied universally. The use of theoretical

scattering models (e.g., Mie theory; T matrix; discrete dipole

approximation) is largely dependent on the microphysical as-

sumptions made within them, leading uncertainties in the es-

timate of S up to a factor of 10 (Hiley et al. 2011). Thus, it

should be clear that in order to improve the estimate of global

snowfall properties, methods beyond using a single standard

power-law fit must be explored.

Currently, the operational retrieval method used in

CloudSat uses optimal estimation (Rodgers 2000), where the

observed Ze and a priori constraints are used to retrieve

snowfall properties (Wood et al. 2013; Wood and L’Ecuyer

2021). Since this method has shown good agreement with

ground-based radar retrievals in the United States (Cao et al.

2014; Chen et al. 2016), Sweden (Norin et al. 2015), and

Antarctica (Souverijns et al. 2018), CloudSat is currently con-

sidered the best estimate of global snowfall properties and has

been used in numerous snowfall investigations (e.g., Palerme

et al. 2014; Kulie et al. 2016; Palerme et al. 2017; Milani et al.

2018; Kulie andMilani 2018; Kulie et al. 2020). The uncertainty

in CloudSat’s retrieval of S has improved with the optimal es-

timation technique relative to a single power-law fit, although

the retrieval has nontrivial uncertainties estimated to be be-

tween 50% (Palerme et al. 2014) and 160% (Kulie et al. 2020).

To retrieve snowfall properties from GPM-DPR, an algo-

rithm is used that prescribes a relation between the precipi-

tation rate, mass-weighted mean diameter Dm and Ze to

simultaneously retrieve the properties of hydrometeors re-

gardless of phase (Kozu et al. 2009; Iguchi et al. 2018). Direct

comparisons between GPM-DPR snowfall retrievals and

surface-based references have yet to be conducted, but the

snowfall retrievals have still been used to investigate the

global distribution of snowfall (e.g., Adhikari et al. 2018;

Adhikari and Liu 2019). However, a comparison using

CloudSat as a reference has shown that GPM-DPR’s re-

trieval of global average snowfall rate is underestimated by

approximately 43% even after considering measurement

differences between CloudSat and GPM-DPR (Skofronick-

Jackson et al. 2019). Furthermore, an investigation of the

GPM-DPR retrieval microphysical assumptions by Chase

et al. (2020) showed that the current GPM-DPR algorithm is

likely inappropriate for snowfall retrievals and thus other

retrieval methods should be investigated.

One alternative retrieval method for GPM-DPR is to adopt

the same optimal estimation technique as CloudSat but at

GPM-DPR frequencies. This has been shown to work well for

triple-frequency observations from field campaigns (Grecu

et al. 2018; Leinonen et al. 2018; Tridon et al. 2019) and could

potentially be applied to dual-frequency observations. A sec-

ondmethod, explored in this paper, would be to use an artificial

neural network (NN) to retrieve snowfall properties.

Neural networks have been widely used in remote sensing

(Mas and Flores 2008), including the classification of clouds

from passive satellite irradiances (e.g., Key et al. 1989) as well

as the retrieval of snowfall properties (e.g., Xiao et al. 1998;

Sekelsky et al. 1999). Xiao et al. (1998) trained several NNs

using the vertical column of single-frequency radar measure-

ments and ground based measured snowfall accumulations,

showing that the NN can perform better than the standard

power-law approach. In Sekelsky et al. (1999), an NN was

trained on scattering simulations produced by a T-matrix code

(Mishchenko and Travis 1998) at three frequencies (S, Ka, and

W bands) and a range of theoretical negative exponential

distributions of particles in order to retrieve the volume

weighted mean diameter D0 and the negative exponential in-

tercept parameter N0. Since the study by Sekelsky et al. (1999),

comparisons with more accurate numerical modeling of ice

particle scattering, namely the discrete dipole approximation

(DDA; Yurkin and Hoekstra 2011), have shown that T matrix

predicted scattering properties cannot fully reproduce 94GHz

scattering properties of aggregates (Kneifel et al. 2011).

Furthermore, the results from Sekelsky et al. (1999) were never

evaluated against observations and thus the uncertainties of the

retrieval are unquantified and unknown. Both Xiao et al. (1998)

and Sekelsky et al. (1999) show that NNs contain potential for

accurate retrievals of snowfall properties. Thus, a renewed in-

vestigation of NNs with the latest results from scattering models

and ice particle observations (i.e., in situ and radar) is motivated.

Here, an NN for retrieving two parameters of the normal-

ized gamma distribution (Testud et al. 2001; Delanoë et al.

2014), namely the normalized intercept parameter Nw and the

mass-weightedmean diameterDm, from radar observables and

temperature is trained. Specifically, scattering results from

numerous DDA and generalized multiparticle Mie method

(GMM; Xu 1995) simulations of a wide variety of unrimed

particle types are used in conjunction with measured particle

size distributions (PSDs) from NASA field campaigns to

synthesize a database of snowfall properties and their associ-

ated Ze at GPM-DPR frequencies. This database is then used

to train an NN for the simultaneous retrieval of Nw and Dm,

which is evaluated against a standard power-law retrieval as well

as an estimate of the current GPM-DPR retrieval. Then the NN

retrieval is evaluated on coincident observations ofZe and in situ

snow properties from three case studies obtained from NASA

Ground Validation campaigns. The paper is structured as fol-

lows: section 2 describes that data used in this study and how the

synthetic database is generated. Section 3 contains the results of

the evaluation of the retrievals on the synthetic database as well

as three case studies. Section 4 discusses how the NN retrieval

compares to the operational GPM-DPR algorithm and how it

could be implemented on the GPM-DPR record. Section 5

summarizes the results and conclusions.

2. Data and methods

a. Description of PSD parameters

The features used for retrieving Nw and Dm within the NN

are Ze at Ku band, dual-frequency ratio (DFRKu–Ka), and

temperature (T). Using in situ aircraft observations of PSDs

sorted into different bin sizes, Ze can be calculated by
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where l is the radar wavelength, jKj2 is the dielectric factor

(0.93 and 0.92 for Ku and Ka band, respectively), sbsc(Di, l) is

the backscatter cross section, and N(Di) is the number distri-

bution function for particles with maximum dimension of Di.

The i subscript indicates the ith bin of the PSD, and DDi is the

bin width of the ith bin. TheDFRKu–Ka is defined as the ratio of

Ze at Ku band (Ze,Ku) to Ze at Ka band (Ze,Ka):

DFR
Ku2Ka

5 10 log
10

 
Z

e,Ku

Z
e,Ka

!
. (3)

The output targets for the retrieval are adapted versions of the

three-parameter normalized gamma distribution (Testud et al.

2001; Delanoë et al. 2014). Specifically, the solid-phase mass-

weightedmean diameterDms
, the liquid equivalentmass-weighted

mean diameter Dml
, and the liquid equivalent normalized inter-

cept parameter Nwl
. Adapted versions of the normalized gamma

distribution are used to supply consistency with the current GPM-

DPR retrieval that outputs Dml
and Nwl

. TheDms
is defined as

D
ms
5
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nbins
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)D
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i
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i
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wherem(Di) is themass of a particle with maximum dimension

Di. The actual assumption of the mass of each particle is dis-

cussed more in sections 2e and 2g. To calculate Dml
, the liquid

equivalent dimension Dmelted must be known, and for the ith

bin it is defined as

D
meltedi

5

�
6m(D

i
)

pr
l

�1/3
, (5)

where rl is the density of liquid water. Then Dml
is defined as

D
ml
5
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)DD
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Chase et al. (2020) provides more details and justification for

Eq. (6). The liquid equivalent normalized intercept parameter

is defined following Delanoë et al. (2014), except using the

Dmeltedi rather than Di, expressed as

N
wl
5

44

6

�
nbins

i50

D3
meltedi

N(D
i
)DD

i

" #5

�
nbins

i50
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)DD

i

" #4 . (7)

Ice water content (IWC) can then be calculated from Dml
and

Nwl
by

IWC5
N

wl
D4

ml
r
l
p

44
. (8)

The retrieval of S was not performed herein because of the

added uncertainty from the myriad of particle terminal fall ve-

locities associatedwith snowfall, but one could calculate Swith the

retrievedDml
andNwl

, assuming a value form [shape parameter in

the three-paramater gamma distribution; Borque et al. (2019)

provides the guidance on the distributionofm from theGPMCold

Season Precipitation Experiment (GCPEX)] and assuming values

for the terminal fall velocity as a function of Di. Furthermore,

there is no current method to observe S from an airborne plat-

form, which is the primary evaluation method used here.

b. DDA-GMM database

The results of numerous investigations of snowfall scattering

of unrimed crystals at microwave wavelengths (Leinonen and

Moisseev 2015; Leinonen and Szyrmer 2015; Lu et al. 2016;

Kuo et al. 2016; Eriksson et al. 2018) are combined into a single

database. Particle habits within these studies include pristine

monomer shapes that occur in the atmosphere such as bullet ro-

settes, dendrites, plates, columns, and different aggregates con-

sisting of these habits. The range of Di within the combined

dataset is from 13mm to 6.3 cm. The dependence of sbsc on mass

m for the Ku andKa bands and the dependence ofm onDi for all

particles used in the database are shown inFigs. 1a–c, respectively.

Interestingly, even though only unrimed particles are included, a

power-law fit between m and Di to the amalgamation of all par-

ticles results in similar power-law relationship of moderately

rimedparticles reported inLeinonen andSzyrmer (2015) (Fig. 1c).

c. NASA GV observations

Observations collected as part of the NASA Ground

Validation (GV) field campaigns (Petersen et al. 2020) were

used in both the formulation of the NN and its evaluation. The

formulation of the NN requires a large dataset of the three

aforementioned input features (Ze, DFRKu–Ka, and T), which

in turn requires the use of an estimate of N(Di). In situ data

collected on the University of North Dakota’s Citation

Aircraft (Delene et al. 2019) during the Midlatitude Continental

Convective Clouds Experiment (MC3E; Jensen et al. 2016),

GCPEX (Skofronick-Jackson et al. 2015) and the Olympic

Mountains Experiment (OLYMPEX; Houze et al. 2017) are

used here. The N(Di) is derived from measurements by two

optical array probes (OAP) that capture silhouetted images of

cloud and precipitation particles. InMC3E, the two-dimensional

cloud probe (2DC) and the high-volume precipitation spec-

trometer, version 3 (HVPS3), were used for N(Di) for size

ranges between 175mm and 1mm and between 1mm and 3 cm,

respectively. InGCPEX, the cloud imaging probe (CIP) and the

HVPS3 were used, while for OLYMPEX the two-dimensional

stereo probe (2DS) and the HVPS3 were used for the same size

ranges as MC3E, respectively. All OAP data were processed

using the University of Illinois–University of Oklahoma Optical

array Probe Software (UIOOPS; McFarquhar et al. 2017;

Jackson et al. 2014) to remove shattered artifacts and recon-

struct both hollow images and images of particles whose edges

touched one of the sides of the photodiode array. The 1-s PSDs

were then averaged to 10 s to allow for better sampling statistics

of large particles (McFarquhar et al. 2007) and to have similar

horizontal spatial scales to that of the airborne radar.
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To evaluate the trained retrieval, dual-frequency radar

measurements collected by the Airborne Precipitation Radar

(APR), versions 2 and 3, were used. The APR is a scanning

radar that collects beam matched measurements of Ze at 13.4

and 35.6GHz (Ku and Ka band) 6258 from nadir through 24

scans (Sadowy et al. 2003; Durden et al. 2019). The nominal

vertical resolution of the radar is 30m, while the along-track

resolution is approximately 1 km. The APR was flown on

NASA’s DC8 aircraft, which flew mostly constant altitude

flight legs above precipitation echoes. The APR, version 2,

was used in GCPEX and had a nominal sensitivity of 0

and220 dBZ for the Ku band and Ka band, respectively, while

theAPR, version 3, was used inOLYMPEXwith a sensitivity of

10 dBZ and 220 dBZ for Ku band and Ka band, respectively.

The only difference between versions 2 and 3was the addition of

94GHz (W band) measurements in the APR, version 3. Since

this work is GPM-DPR centric and attenuation from snowfall at

W band is nontrivial, up to 1 dBkm21 whereas at Ku and Ka

band are estimated to be around 0.1 dBkm21 or less (Kneifel

et al. 2011), only the Ku- and Ka-band reflectivities are used.

To ensure correct absolute calibration of the radars, the Ku-

band radar is calibrated by considering surface echoes of a

water body in nonprecipitating conditions (GCPEX: Lake

Huron and Lake Ontario; OLYMPEX: Pacific Ocean; Tanelli

et al. 2006). Then theKa band is calibrated against theKu band

by considering low reflectivity regions of the echoes where

there is likely scattering in the Rayleigh regime (Durden et al.

2019). The uncertainty in this calibration is estimated to be

approximately 1 dB for Ku and Ka band.

Several steps of processing of the APR data are re-

quired before its use in the retrieval. While attenuation

from O2 and H2O vapor is small, they are corrected for

using the gaspl package in MATLAB (Radiocommunication

Sector of International Telecommunication Union 2013;

https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-10-

201309-S!!PDF-E.pdf) and a thermodynamic sounding collected

near the time of the radar data collection. The mean values for

two-way correction from gaseous attenuation is 0.15 and 0.6 dB

for Ku andKa band, respectively at the surface. Since the focus of

this analysis is on only solid-phase hydrometeors, liquid-phase

echoes, melting echoes (i.e., the bright band), surface echoes, and

the radar returns from the in situ aircraft itself were all removed

prior to running the retrieval. Liquid-phase echoes where deter-

mined as the echoes found at altitudes lower than themelting level

FIG. 1. Combination of all DDA/GMM particles simulated from studies mentioned in section 2b. Each dot represents an individual

particle that has had its scattering properties simulated. (a) Ku-band and (b) Ka-band backscatter cross section (sbsc; dots). The IQR and

median are shown in the black shading and black line, respectively. Rainbow curves are the sbsc as predicted from Tmatrix (Mishchenko

andTravis 1998) using pyTmatrix (Leinonen 2014). The particles are oblate spheroids with axis ratios of 0.6 and 08 incidence angle with the
mass predicted by the mass–dimension relations from Leinonen and Szyrmer (2015). Bluer colors indicate less riming; redder colors

indicate more riming [see the color bar in (b)]. (c) The mass of all DDA/GMM particles as a function of particle maximum dimensionDi.

Rainbow lines are the mass–dimension power-law fits from Leinonen and Szyrmer (2015) for various degrees of riming. The solid black

line with annotation is the mass–dimension power-law fit to the DDA/GMMdatabase of the form Eq. (9). The a and b coefficients for the

new power-law fit are 0.042 and 2.04, respectively (in SI units).

FIG. 2. Flowchart of how the database of PSD parameters used to

train and evaluate the neural network is generated.
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that was determined by considering the peak in linear depolar-

ization ratio (LDR). Furthermore, echoes found near or below

theminimum sensitivity of theKu-bandZewere removed (10 and

0 dBZ for OLYMPEX and GCPEX, respectively).

To execute the NN retrieval, a T profile is required. For the

APR, the T and altitude measured by the University of North

Dakota (UND) Citation are used from each mission day to

construct a mean temperature profile. This profile is then lin-

early interpolated to the APR vertical resolution. The Citation

T is used as opposed to a radiosonde observation because it

flew in a regionmore representative temporally and spatially of

the environment sampled by the radar. A sensitivity test using

the observed sounding as opposed to the Citation derived

sounding resulted in an absolute mean percent difference of

5%, 20%, and 14% for Dml, Nwl
, and IWC, respectively.

d. Collocation of in situ and radar measurements

To quantitatively evaluate the output of the NN retrieval,

collocated in situ and radar data are required. Collocated

points are identified following a technique similar to Chase

et al. (2018) and Ding et al. (2020), who used a kd-tree

searching algorithm from Scipy (Oliphant 2007) to efficiently

search the APR sample volume for 30 of the closest gates

within 1 km of the in situ aircraft location. One difference from

Chase et al. (2018), where the weighted mean of the 30 closest

gates were used, is that the closest gate is chosen from the 30

closest located by the kd-tree algorithm. The closest gate

method was chosen to prevent auto correlations in the radar

data from influencing the performance statistics. Testing the

sensitivity between the 30-gate average used in Chase et al.

(2018) and the closest gate used here results in a Ze change of

less than the calibration uncertainty (,1 dB). The average

spatial error of collocation is approximately 370m. Another

difference from Chase et al. (2018) is that observations were

considered coincident for this study when they were collected

within 5min temporally, while Chase et al. (2018) used a

10-min temporal threshold.

e. PSD parameter reference from in situ

While an independent measure of bulk water content within

clouds was made during GCPEX and OLYMPEX, previous

studies have suggested the Nevzorov probe, used in both field

campaigns, underestimates mass in comparison with other bulk

water content probes (e.g., Korolev et al. 2013; Abel et al.

2014). Since an estimate of particle mass is required to calcu-

late Dml
, Dms

, Nwl
, and IWC, a parameterization given by

m5 aDb (9)

is used, where a and b can vary depending on the conditions

where the measurements were obtained or on the probes used

to collect the data (Finlon et al. 2019). To constrain the choice

of a and b, the collocated Ze from the APR and the Ze calcu-

lated from the PSD are compared. Specifically, Ze is calculated

from the PSD using Eq. (2) and the sbsc from 6 different de-

grees of riming categories reported in Leinonen and Szyrmer

(2015). Then, the a and b parameters associated with the sbsc

that provides least error between measured and calculated Ze

at both Ku and Ka band are chosen. From there, Dml
, Dms

,

Nwl
, and IWC are all calculated using the selected a and b.

FIG. 3. Joint distributions of Ze–IWC for the synthetic database generated from the

DDA/GMM particles and measured PSDs. (a) Ku-band and (b) Ka-band results. The solid

red line is the new power-law fit to the data plotted, and the dashed red line is the version-6

GPM-DPR power-law fit (see appendix A). Additional yellow lines in (b) are two power-law

fits from Liu and Illingworth (2000) (solid line) and Sassen (1987) (dashed line).

TABLE 1. RMSE of the retrieved IWC (gm23) using the power-

law fits on the synthetic test dataset. Sassen (1987) and Liu and

Illingworth (2000) only had Ka-band fits. For convenience, the

a and b parameters of each of the power laws are included in the

table. Ku-band parameters are in parentheses, and Ka-band pa-

rameters are in square brackets.

Ku

band

Ka

band (aku, bku); [aka, bka]

DDA/GMM 0.29 0.25 (0.024, 0.570); [0.026, 0.638]

2ADPR 0.47 0.47 (0.003, 0.469); [0.002, 0.548]

Sassen (1987) — 0.53 (—, —); [0.037, 0.7]

Liu and Illingworth

(2000)

— 0.87 (—, —); [0.097, 0.59]
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The average error of Ze from this method is 0.20 and 1.3 dB for

Ku and Ka band, respectively.

f. GPM-DPR observations

The current GPM-DPR retrieval process is described in the

algorithm theoretical basis document (Iguchi et al. 2018). To

compare the current GPM-DPR retrieval ofNwl
andDml

to the

NN retrieval developed herein, the NN retrieval is applied

directly to the GPM-DPR data, which are the version-6 level-2

(2ADPR) data product. As with the APR data, an estimate of

T at each radar gate is required. Thus, to allow for consistency

between theNN retrieval and theGPM-DPR retrieval, the NN

when applied to the GPM-DPR data uses the sameT data used

in the GPM-DPR algorithm that are provided by the Japan

Meteorological Agency numerical weather prediction model.

g. Snowfall properties database

The process of creating the training and test dataset for the

NN is described here and is shown graphically in Fig. 2. The

PSD dataset is split into training and testing groups by ran-

domly selecting 333 PSDs (approximately 10% of the PSD

data) without replacement from each field campaign and labeling

them as the test dataset. The remaining 15 487 PSDs are labeled

as the training dataset. Then the datasets are upscaled by ran-

domly samplingwith replacement. For the training dataset, 33 333

PSDs fromeach campaign are randomly sampled, whereas for the

test dataset 3333 PSDs are sampled, providing a 90%/10% split

between the two datasets. For each bin characterizing a PSD, one

DDA-GMM particle is randomly sampled with replacement

that has amaximumdimensionDp such thatDi2 (DDi/2)#Dp#

Di 1 (DDi/2). This creates a random distribution of simulated

particle types that match the prescribed dimensions of Di and

subsequently N(Di). Once a random collection of particles is as-

signed to each PSD,Ze,Dml
,Nwl

, and IWCare calculated using the

particle type information provided by the DDA-GMM simula-

tions and the equations shown in section 2a. Note that, although

there is no additional information gained from upscaling the PSD

data, there are over 20 000 particles that create numerous unique

combinations of particles and PSDs. The unique combinations

provide a wider variety of plausible microphysical/microwave

properties, which should allow the NN to become more

generalized.

To provide context of Ze and IWC that have been synthet-

ically generated, the joint distribution of Ze and IWC is shown

in Fig. 3. Additional information of the range of different radar

scattering properties of the training database can be found in

appendix B and Fig. B1. It is not surprising that the range

of IWC calculated is larger than that measured by the bulk

water probes used in MC3E, OLYMPEX and GCPEX (e.g.,

Nevzorov) because the probes are known to underestimate

IWC. Thus, the data are kept for training in order to provide a

spectrum of plausible values to the NN.

A new power law between Ze and IWC (solid red line in

Fig. 3) of the form

IWC5aZb
e (10)

was obtained from the training dataset, and the coefficients are

listed in Table 1. This relationship provides a baseline retrieval

to compare with the NN. Herein this will be referred to as the

legacy method retrieval. A comparison of the new legacy

method with previous relations (e.g., Sassen 1987; Liu and

Illingworth 2000) shows that the new fit generally estimates

lower IWC for the same Ze by approximately 300% and 50%

FIG. 4. Neural network architecture; see Table 2 for more detail.

Input parameters are Zku, DFR and temperature T. Outputs are

Nwl
, Dml

, and Dms
. There are six hidden layers, with weights wi,j,

where i and j are the layer and neuron number, respectively. The

bias parameters are labeled as bi. Activation functions are all the

same but are not shown here to save space.

TABLE 2. Specific parameters used to train the neural network.

Software Tensorflow

No. of hidden layers 6

No. of neurons per layer 8

Optimizer RMSprop

Activation function Rectified linear unit (ReLU)

Initial learning rate 0.001

Input shape 3

Output shape 3

Batch size 128

Loss function Mean square error

No. of epochs 125
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relative to the Liu and Illingworth (2000) and Sassen (1987)

relations, respectively. For a second comparison, an average

relation of the form in Eq. (10) is obtained from output of the

current GPM-DPR algorithm (see appendix A). The IWC

obtained from the GPM-DPR relation are approximately a

factor of 10 smaller than the IWC generated here. Since S is

proportional to IWC, it is consistent with Skofronick-Jackson

et al.’s (2019) study showing that GPM-DPR is under-

estimating S. To quantify the error in retrieved IWC for all

retrievals, the root-mean-square error (RMSE),

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

0

(x
r
2 x

t
)2

n

vuuut
(11)

is used, where xr is the vector of retrieved values, xt is the vector

of true values, and n is the number of data samples in the test

set. The RMSE for each legacy method calculated on the test

dataset is shown in Table 1.

h. NN details

The type of NN used here is a fully connected feed forward

multilayered perceptron NN. The network has three input

features, six hidden layers of eight neurons and three output

labels (Fig. 4). The input features were chosen based on what is

available operationally from GPM-DPR, namely the Ku-band

Ze in logarithmic units (dBZ), the DFRKu–Ka in logarithmic

units (dB) and the T in degrees Celsius. The structure of the

network was determined by systematically retraining the net-

work with 2–128 neurons and 2–10 layers and choosing the

network with the least amount of error on the test dataset

before showing a signal of overfitting. All networks were

trained on graphical processing units (GPUs) provided by

Google’s freely available computation platform (Google

Colaboratory) and the open source software package Tensorflow

(Abadi et al. 2016).

Before training, the data require a transformation to prevent

weighting any specific input feature unfairly based on its

absolute magnitude and range. Thus, all input features were

scaled to have a mean of 0 and a variance of 1. In addition,

taking the logarithm of the output labels and scaling them to

have mean 0 and variance of 1 provided the least RMSE. All

parameters described above, as well as a few other specific de-

tails, are noted in Table 2. In the event the reader would like to

use the trained NN, an example of loading and running the

network is shown in a Jupyter notebook with the associated data

included with this paper (see data availability statement).

3. Results

a. Evaluation of the retrieval methods on the synthetic
dataset

Any empirical method can be overfit intentionally to pro-

vide optimal results on a training dataset. Thus, here the NN

retrieval is evaluated on the test dataset. The median percent

error (MPE), defined as

MPE5median

�
1003

y
r
2 y

t

y
t

�
, (12)

where yr is the vector of retrieved values and yt is the vector of

true values, is chosen as the metric of evaluation. Figure 5

shows the MPE as a function of the retrieved parameter of

interest’s magnitude. For retrieved Dml
and Dms

there is little

bias, with MPE around 0% and an interquartile range (IQR)

on average of 617% and 623% for Dml
and Dms

, respectively

(Fig. 5a). Similarly, Nwl
has MPE of 2% but has much larger

FIG. 5. Percent error as a function of retrieved parameter magnitude. (a) Median error associated with Dml
(solid blue line circle

markers; bottom x axis) and withDms
(solid red line square markers; top x axis). The interquartile range is shown in shading. (b) As in (a),

but forNwl
. (c) As in (a) and (b), but for IWC. The red shading and line are from the neural network, the yellow shading and line are from

the average Ku-band GPM-DPR relation, and the blue shading and line are for the Ku-band legacy power-law relation trained on the

synthetic database.

TABLE 3. RMSE of snowfall parameter retrieved by the NN on the

synthetic test dataset.

Parameter RMSE

Dml
(Dms

) 0.12 (0.41) mm

Nwl
1.27 3106m23 mm21

IWC 0.24 gm23
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average IQR than does Dm, with the mean first quartile

being 251% and the mean third quartile being 1114%.

Using Eq. (8), IWC can be calculated so that the NN

retrieval can be compared directly to the legacy methods.

The NN (red in Fig. 5c) performs best, showing a MPE

around 11%, and a mean first quartile of 225% and a mean

third quartile of143%.As themagnitude of the retrieved IWC

increases, the IQR decreases, implying that there is less rela-

tive uncertainty when the retrieval is retrieving IWC $

0.5 gm23. Meanwhile, the legacy fit provided in section 2g

(blue in Fig. 5c) provides the second-best method. There is a

clear high bias of 135% at IWC # 0.01 gm23 and of 161%

IWC$ 1.0 gm23, while underestimating between 0.01 gm23,
IWC, 1.0 gm23. The legacy fit also shows considerably more

uncertainty than the NN, showing a larger IQR. The esti-

mation of the current GPM-DPR algorithm (yellow in

Fig. 5c) shows a constant underestimation for all IWC of

approximately 86%.

Comparing the RMSE of the NN retrieved IWC (Table 3)

with the RMSE of the legacy methods (Table 1), the NN

FIG. 6. (a)Map with of GCPEXdomain with a PPI from the Environment and Climate Change Canada’s C-band

radar located at King City, Ontario (WKR), at 0015 UTC 31 Jan 2012. The solid black line is the Citation aircraft

track, and dashed black lines are the extent of the APR-2 scan volume at the ground. (b) Radiosonde observation

taken at 2218 UTC 30 Jan 2012 at the WKR site. One full wind barb indicates 10m s21.

FIG. 7. Cross section at near nadir from theAPR-2 along the flight shown in Fig. 6. (a) ObservedZKu. The Citation flight track within65

mins of radar data collection is shown with the dashed black line. (b) Observed ZKa. (c) Dual-frequency ratio between Ku and Ka band

(DFRKu–Ka). Echoes are filtered to remove melting particles, surface returns, rain echoes, noise above echo top, and the Citation aircraft

echo itself. (d) RetrievedDml
using the neural network. (e) RetrievedNwl

using the neural network (f) Calculated IWC from the retrieved

Dml
and Nwl

using the neural network.
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outperforms all other legacy methods. To test statistical signifi-

cance, a two-sample Student’s t test is used to compare the square

error of the legacy methods to the square error of the NN re-

trieval. The result shows that the NN has a significantly (p, 0.05)

lower square error than all methods except the Ka-band legacy

power-law fit. Thus, the NN retrieval provides estimates of IWC

that are equal to or better than legacy method, while additionally

retrieving two parameters of the PSD.

b. Case studies

While the evaluation of the NN on the test dataset provides

an initial quantification of uncertainty and errors, the test

datasetmay not be truly independent from the training dataset.

The PSDs used to synthesize the training and test dataset were

measured in close spatial and temporal proximity to each other

and thus are potentially correlated. The aforementioned im-

plicit correlation could have skewed the evaluation done in

section 3a. Furthermore, the stochastic nature of particle se-

lection in the synthetic database could be unphysical, leading

to training and evaluation of the NN on potentially unphysical

Ze, Dml
, and Nwl

triplets. Thus, to gain more confidence in the

NN retrieval and more physical insight, three case studies are

used to further evaluate the retrieval.

1) 31 JANUARY 2012

The first case study is a synoptic snowfall event from

GCPEX that occurred on 31 January 2012 (Fig. 6). This

case represents a typical continental cyclone, with warm air

advection leading to widespread light snowfall over the

GCPEX domain. Both aircraft flew a coordinated flight

around 0016 UTC with the Citation flying an oval pattern

northwest of the King City (Ontario, Canada) radar and the

DC-8, carrying the APR, flying straight overtop the Citation

(Fig. 6a). The sounding from the start of the mission

(2218 UTC 30 January 2012) shows temperatures from the

surface to 750 hPa are between 258 and 2108C, with the

dendritic growth zone located between 700 and 600 hPa

(Fig. 6b). The King City ground-based C-band radar plan po-

sition indicator (PPI) scan shows widespread snow, with lo-

calized bands of higher Ze (Fig. 6a).

Considering the cross section at near nadir of the swath

shown in Fig. 6a, meteorological radar echoes are found up to

the altitude of the DC-8 (8 km; Fig. 7a). However, echoes that

are sufficiently above the minimum sensitivity of Ku-band ra-

dar only extend to 4 km. A clear fall-streak echo pattern shows

up in the Ku and Ka band as well as the DFRKu–Ka (Fig. 7c)

between 20 and 60 km horizontally and between 0 and 3 km

vertically. The results of applying the NN retrieval to the APR

data are shown in Figs. 7d–f. Only Dml
is shown because Dms

is

highly correlated to Dml
. Within the fall streak, Dml

is 0.75–

1.00mm, while outside the fall streak it is # 0.5mm (Fig. 7d)

consistent with the increase in particle size in fall streaks noted by

Plummer et al. (2015). Inversely, Nwl
within the fall streak is

lower than the surrounding cloud (Fig. 7e). Calculating IWC

shows peak values found within the fall streak of approxi-

mately 0.1 gm23.

The retrieval data matched to the in situ plane are shown in

Fig. 8. Both the retrieval and in situ measurements ofDml
have

good agreement showing anMPE of less than 15%. The retrieval

of Nwl
performs worse than that of the Dml

, showing a constant

low bias of approximately 0.5 in units of log(m23mm21). This low

bias propagates into the calculation of IWC that is biased low

FIG. 8. Along-track comparison between in situmeasurements and collocated retrieved products for 31 Jan 2012. (a) Solid lines indicate

the best estimate of Dml
(blue) and Dms

(red) calculated from PSD; matched neural network retrievals of Dml
(blue) and Dms

(red) are

dashed lines. (b) Similarly, best estimate of Nwl
is the solid line calculated from PSD; the matched neural network retrieval is the dashed

line. (c) Best estimate of IWC is the solid black line; the matched neural network retrieval is the dashed red line (NN). The average

power-law relation for current GPM-DPR algorithm (DPR; yellow dashed) and new power-law fits for Ku (KuPL; blue dashed) and

Ka band (KaPL; blue dotted) are shown for reference.

TABLE 4. RMSE and MPE (in parentheses) from the 31 Jan 2012 case study. Asterisks indicate that the exponential relations do not

explicitly predict any other parameter except IWC.

Parameter NN DDA/GMM Ku, Ka 2ADPR

Dml
, Dms

0.08, 0.25mm; (111%, 27%) * *

Nwl
1.87 3 105m23 mm21; (261%) * *

IWC 0.05 gm23; (228%) 0.06, 0.05 gm23; (243%, 234%) 0.13 gm23; (294%)
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by approximately 0.05 gm23. The RMSE and MPE between

the retrieved parameters and the in situ estimates are found in

Table 4. For this relatively uniform low IWC case, the NN

retrieval performs better than suggested in Table 3.

2) 12 FEBRUARY 2012

The second case analyzed evaluates the NN retrieval on a

shallow convective snowfall event (i.e., lake effect snow) from

12 February 2012 duringGCPEX. The PPI scans from theKing

City radar show a narrow band of snowfall emanating from

Georgian Bay and impacting the local Southern Ontario region

(Fig. 9a).A radiosonde observation taken 40min after the flights

in Fig. 9b, show cold 850 hPa temperatures at about 2158C
providing ample conditional instability for lake-effect snow

given an average lake surface temperature of Lake Huron of

28C. The DC-8 and Citation flew multiple legs between

Georgian Bay and the King City radar site, transecting the lake

effect snowbands.

The cross section shown from 12 February 2012 shows echo

tops much shallower than 31 January 2012, peaking at ap-

proximately 2.5–3 km MSL (Fig. 10). Individual convective

elements are seen in theZe field, diagnosed from the pockets of

Ze $ 30 dBZ (Fig. 10a), which contained observed Doppler

velocities of 1.0–1.5m s21 upward (not shown). There are no

clear fall streaks in this case, but DFRKu–Ka is locally increased

to.5 dB at 40–60 km (Fig. 10c). The retrievedDml
is increased

in the larger DFRKu–Ka regions to 1–1.5mm (Fig. 10d) while

being near 0.5mm outside. The same larger DFRKu–Ka regions

FIG. 9. As in Fig. 6, but for 12 Feb 2012. (b)Radiosonde observation taken at 0640 12 Feb 2012, with the blue open

circle near 1000 hPa indicating average surface temperature of Lake Huron from the National Oceanic and

Atmospheric Administration CoastWatch Great Lakes.

FIG. 10. As in Fig. 7, but for 12 Feb 2012.
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are characteristic of Nwl
around 3.5 log(m23mm21) and IWC

around 1 gm23.

In comparing the retrieved Dml
with in situ data, it is seen

that there is an initial poor agreement that appears along the

flight track, with the retrieval overestimating the measured

values by 0.75mm, but then agreement improves along the

track by 35 km (Fig. 11a). This could be due to the poor tem-

poral matchup between the APR and the Citation (5 mins at

the start) and the large spatial heterogeneity. Interestingly,

unlike the previous case where the performance of the re-

trieved Dms
was similar to the performance of the Dml

, re-

trievedDms
shows a constant low bias of a factor of 2 (Fig. 11a)

at the same location where the retrieval of Dml
is performing

well (with MPE of 8%). The retrievals of Nwl
and IWC show

the same poor agreement at the start, but then agree within

33%–43% (MPE) at distances greater than 35 km. Although

the Nwl
retrieval has less error (by 13%) relative to the

31 January 2012 case, the retrieval of IWC is still low when

compared with the in situ measurement but is performing

better than the other legacy methods. The retrieved RMSE of

parameters for 12 February 2012 are worse than the RMSE on

the synthetic data and the previous case, but the NN retrieval

outperforms all legacy methods in retrieving IWC with a

RMSE of 0.27 gm23 (Table 5). It should be noted that during

the 12 February 2012 case, the Citation was detecting the

presence of supercooled liquid water from the Rosemount ic-

ing detector probe (Baumgardner and Rodi 1989), which im-

plies that rimed particle types are plausible and could partially

explain why the retrieval performs worse on the 12 February

2012 case than the 31 January 2012 case and the synthetic

dataset.

3) 3 DECEMBER 2015

The last case presented herein considers a synoptically

forced event that occurred over complex topography on

3 December 2015 during OLYMPEX. The 1.458 PPI scan from

the National Weather Service Langley Hill (Washington)

S-band radar shows widespread precipitation echoes, with

enhancements of reflectivity over the terrain located NE of the

radar location (Fig. 12a). A radiosonde from approximately

the same time and location as the ground-based radar scan

shows a moist environment, with the melting level located at

approximately 750 hPa (or 2 km MSL). Both airplanes were

flying a coordinated stacked leg pattern from northwest to

southeast over the Olympic Mountains (dashed and solid line

in Fig. 12a).

The cross section of raw Ze and the retrieved products are

shown in Fig. 13. Echo tops at Ku and Ka band on 3 December

2015 extend up to about 8 km MSL, with an apparent melting

level at 2 km (i.e., bright band; Figs. 13a,b). Interestingly, there

is also a secondary level of enhancement of Ze found at 3.5–

4.5 km that shows up well in DFRKu–Ka (Fig. 13c). The sec-

ondary enhancement is characteristic of larger retrieved Dml
,

lower Nwl
, and larger IWC than the immediate surrounding

areas. This region of enhancement is likely associated with a

mountain wave, forced by a stable layer lifted by synoptic flow

over the terrain, leading to locally increased upward vertical

velocities within the layer. Doppler velocities within the second

layer of enhancement showed pockets of 1–2m s21 updrafts (not

shown). Considering the in situ measured temperature and the

sounding (Fig. 12b), the secondary enhancement is close to the

dendritic growth zone, which could be leading to quickly

growing particles by vapor deposition and aggregation and thus

the enhanced Ze and DFRKu–Ka. Below the layer of enhance-

ment, retrieved IWC increases above 1 gm23.

There is good agreement between the retrieval and in situ

observations initially, withMPEof28%,19%, and28% forDml
,

Nwl
, and IWC, respectively, up to 65km.After 65km, the retrieval

underestimates Dml
and Dms

(217% and 228% MPE, respec-

tively; Fig. 14a), and overestimates Nwl
(1163% MPE; Fig. 14b)

leading to an overestimate of IWC (131% MPE; Fig. 14c). The

RMSE of all parameters shows less error than 12 February 2012,

FIG. 11. As in Fig. 8, but for 12 Feb 2012.

TABLE 5. As in Table 4, but for the 12 Feb 2012 case study.

Parameter NN DDA/GMM Ku, Ka 2ADPR

Dml
, Dms

0.25, 1.44mm; (18%, 234%) * *

Nwl
1.79 3 105m23 mm21; (248%) * *

IWC 0.27 gm23; (238%) 0.33, 0.29 gm23; (242%, 237%) 0.67 gm23; (296%)
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but larger errors than the case on 31 January 2012 (Table 6).

As in the 12 February 2012 case, there is supercooled liquid

water sampled by the Citation aircraft on 3 December 2015,

which was noted by Chase et al. (2018) and could be leading

to the observed errors in the NN retrieval. Despite the po-

tential presence of rimed particles, the retrieval of IWC

shows similar RMSE (0.16 gm23) to the legacy methods (0.22

and 0.17 gm23) and improved results relative to GPM-DPR

average relation (0.42 gm23).

4) SUMMARY OF CASES

Three case studies representing different meteorological

conditions were analyzed to compare the retrieved Dml
, Dms

,

Nwl
, and IWC with the in situ measured value. Combining all

three, the case studies show that the NN performs similarly to

what was described in section 3a (Table 3), with statistically

significant (p , 0.05) lower square error on IWC when com-

pared with an estimate of the current GPM-DPR algorithm

and a legacy power-law fit using Ku-band Ze. The resulting

combined MPE is 213%, 223%, 1120%, and 110% for Dml
,

Dms
, Nwl

, and IWC, respectively. It is important to emphasize

that for cases 2 and 3 the NN is performing better than legacy

methods despite the presence of potentially rimed particles

being sampled in situ. Thus, while the formulation of the

training dataset is somewhat simple (i.e., no rimed particles), it

is still general enough to provide improved retrieval results

FIG. 12. As in Fig. 6, but for 1509 UTC 3 Dec 2015 and the Langley Hill NEXRAD radar (KLGX). (a) A second

set of lines (dotted) indicates the GPM-DPR inner swath where Ku- and Ka-band observations are made.

(b) Radiosonde observation taken at 1516 UTC 3 Dec 2015 from near the marked radar location in (a).

FIG. 13. As in Fig. 7, but for 3 Dec 2015.
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relative to a single-frequency power law and an estimate of the

current GPM-DPR algorithm.

4. Neural network implementation on GPM-DPR data

One unique aspect of the 3 December 2015 case was that the

GPM-DPR overpassed the region during the coordinated

flights of the DC-8 and Citation (GPM-DPR orbit track in

dotted lines on Fig. 12a). Thus, the GPM-DPR observations

and the direct output of the operational algorithm can be

compared against the APR data and the output from the NN

retrieval. Since the sensitivity of the GPM-DPR is approxi-

mately 12 and 18 dBZ for the Ku- and Ka-band normal scan,

respectively (Toyoshima et al. 2015), the first noticeable dif-

ference between the APR (Fig. 13) and GPM-DPR (Fig. 15) is

in echo-top height. In the GPM-DPR data, the echo tops are

found at about 5–6 km at Ku band (Fig. 15a) and 4–5 km at Ka

band (Fig. 15b) while the APR showed echo tops to about 8 km

(Figs. 13a,b). The decrease in along-track resolution and ver-

tical resolution can also be gleaned by comparing Figs. 13a–c

and 15a–c. Despite the differences, GPM-DPR measures

similar enhancements in DFRKu–Ka at 4 km altitude and 25–

100 km horizontally and from 100 to 125 km horizontally.

Note the current operational GPM-DPR algorithm has an

along-track ray-to-ray variability that is consistent throughout

the vertical column in the retrieved products (Figs. 15d–f). This

likely occurs because the profiles of Ze are attenuation cor-

rected by considering the surface echo as reference, and this

value is used in the microphysical solver to estimate retrieved

quantities such as Nwl
and Dml

(Iguchi et al. 2018, see their

section 3g). Since these observations were collected over

complex topography, the estimation of path integrated atten-

uation using the surface reference technique likely contains

large errors resulting in the unphysical retrieval result. Despite

this, there does seem to be a local enhancement ofDml
at 4 km

between 30 and 50 km (Fig. 15d), which is consistent with the

NN retrieval applied to the APR data (Fig. 13d). Looking

beyond the ray-to-ray instability, the overall magnitude of Nwl

is a factor of 10 lower than what was retrieved by the NN on the

APR data, which through Eq. (8) leads to a factor-of-10 lower

IWC retrieved by GPM-DPR. This is consistent with the low

bias reported by Casella et al. (2017), Heymsfield et al. (2018),

Skofronick-Jackson et al. (2019), and Chase et al. (2020) and

with the results shown in Figs. 8c, 11c, and 14c.

While it has been shown here that the NN retrieval per-

forms better than the average GPM-DPR retrieval of IWC

(section 3) using the APR data, the uncertainties caused by the

resolution differences, radar sensitivity differences, and the

source of environmental temperature information could im-

pact the retrieval when applied to the GPM-DPR data (e.g.,

Pfitzenmaier et al. 2019). To investigate how the radar differ-

ences impact the retrieval, the NN is applied directly to the

GPM-DPR data on the 3 December 2015 (Fig. 16). The first

noticeable improvement is the correction of the ray-to-ray

variability in retrieved parameters. As a result, the enhance-

ment of Dml
at 4 km becomes more pronounced, showing up

continuously in along-track scans (Fig. 16a). The second im-

provement is the retrieval of Nwl
, which has similar magnitude

[approximately 5 log(m23mm21)] as in the APR retrieval

(Fig. 13e), leading to similar retrieved IWC values.

To directly compare the results from sections 3 and 4, the

median profiles of Dml
, Nwl

and IWC for each retrieval are

shown in Fig. 17. Note that the means are taken from all scans

of the APR, which in areal coverage approximately equal the

area of the GPM-DPR. Furthermore, the APR data were

constrained to have the same minimum sensitivity of GPM-

DPR, which is 12 and 18 dBZ for Ku andKa band, respectively.

Despite the resolution and sensitivity differences, the NN re-

trieval applied to the GPM-DPR data largely capture the same

profile of the NN retrieval applied to the APR. The main

differences that occur are that there is an overestimation

(10.03mm) of Dml
and an underestimation of Nwl

[20.04

log(m23mm21)] between 2 and 4 km. Since the bias of the

retrieval of Dml
and Nwl

are of opposite in sign, they largely

FIG. 14. As in Fig. 8, but for 3 Dec 2015.

TABLE 6. As in Table 4, but for 3 Dec 2015.

Parameter NN DDA/GMM Ku, Ka 2ADPR

Dml
, Dms

0.17, 1.17mm; (213%, 225%) * *

Nwl
5.56 3 105m23 mm21; (1129%) * *

IWC 0.16 gm23; (113%) 0.22, 0.17 gm23; (147%, 135%) 0.42 gm23; (289%)
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offset in the calculated IWC. The median profiles from the

current GPM-DPR algorithm show a constant high bias ofDml

(10.35mm), low bias ofNwl
[21.5 log(m23mm21)], and thus a

low bias of IWC (20.5 gm23). Thus, the NN applied to the

GPM-DPR data can provide physically plausible results that

are improved relative to the current GPM-DPR retrieval for

solid-phase hydrometeor properties.

5. Summary and conclusions

An approach using neural networks (NNs) to retrieve

snowfall properties was formulated with a database of more

than 20 000 ice particles whose microwave scattering proper-

ties were simulated using the discrete dipole approximation

and the generalized multiparticle Mie method. The pool of

particles was paired with observed particle size distributions

(PSDs) measured within ice clouds during NASA Ground

Validation field campaigns to produce a synthetic database of

snowfall properties and their effective radar reflectivity factor

(Ze) at two frequencies (Ku and Ka band). The synthetic da-

tabase was used to train an NN to retrieve two parameters of

the 3-parameter gamma particle size distribution: the liquid

equivalent mass-weighted mean diameterDml
and the liquid

equivalent normalized intercept parameter Nwl
, from which the

ice water content (IWC) can be calculated following Eq. (8). An

evaluation on a subset of the synthetic database not used in

training showed the NN retrieval has anRMSE of 0.1mm, 1.283
106m23mm21 and 0.24 gm23 with an average range of uncer-

tainty of [210%, 17%], [251%, 1114%], and [225%, 143%]

for Dml
, Nwl

, and IWC, respectively. Furthermore, three simple

power-law relations between Ze and IWC evaluated on the same

test dataset show significantly (p, 0.05)worse square error on the

IWC retrieval relative to the NN.

Three case studies from NASA GV field campaigns pro-

vided an independent evaluation of the NN retrieval on coin-

cident observations ofZe and the PSD. The first case, collected

on 31 January 2012, showed that the NN had a median per-

centage error (MPE) between the retrieval and the in situ

FIG. 15. Similar to Fig. 13, but now using GPM-DPR data along the APR3 swath (scan 9 of the inner swath). (a) Measured Ku-bandZe.

(b) Measured Ka-band Ze. (c) Measured DFRKu–Ka. (d) GPM-DPR version-6 retrieved Dml
. (e) GPM-DPR version-6 retrieved Nwl

.

(f) IWC calculated from the GPM-DPR version-6 retrieval of Dml
and Nwl

.

FIG. 16. Neural network retrieval applied to GPM-DPR data for (a) Dml
, (b) Nwl

, and (c) IWC.
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estimates of113%,261%, and228% forDml
, Nwl

, and IWC,

respectively. The second case, a shallow lake effect snowfall

event (12 February 2012), showed better performance with

MPE of 18% and 248% for Dml
and Nwl

, respectively, but

worse performance on IWC (MPE of 238%). The third case

within a Pacific Northwest cyclone over complex topography

(3 December 2015) showed MPE of 213%, 1129%,

and113% forDml
,Nwl

, and IWC, respectively. Analysis for all

three case studies showed that the NN has significantly lower

square error when compared with an estimate of the current

GPM-DPR algorithm and a legacy power-law fit between Ze

and IWC. The NN retrieval was applied directly to GPM-DPR

observations and indicated that the NN can provide a physi-

cally plausible profile, which is able to capture the same mi-

crophysical structures of the higher-resolution APR retrieval

and correct for undesired retrieval artifacts found in the cur-

rent GPM-DPR algorithm (e.g., ray-to-ray discontinuity).

This was the first attempt at providing a viable solid-phase

retrieval alternative for GPM-DPR. Thus, the retrieval in its

current form has caveats that readers and users should be

aware of. Currently, there are no rimed particle types included

in the training database of particles despite rimed particles

being available from the literature (Leinonen and Szyrmer

2015). That being said, the NN retrieval continues to outper-

form a simple power-law and the GPM-DPR algorithm esti-

mate on case studies where riming is likely present (see the

12 February 2012 and 3 December 2015 cases). In future iter-

ations of the NN retrieval, rimed particle types should be in-

cluded. Another caveat is that the training data for the NN

were informed from three field campaigns all located in North

America. Thus, if the goal is to have a global snowfall retrieval,

future iterations of the retrieval should look to included ad-

ditional field campaign measurements of PSDs collected in

other precipitation regimes across the globe. A sensitivity

analysis using different sources for the temperature input to

the retrieval does affect the retrieval by around 10–25%. Thus,

for optimal performance of this NN retrieval, users should use

the most accurate available temperature input (e.g., Sounding

in close proximity spatially and temporally).

Future avenues of research could modify the NN to also

predict the shape parameter of the PSD (m); that way, other

PSD characteristics, such as precipitation rate, can be derived.

Future work should also look to evaluate the NN retrieval on

additional case studies from OLYMPEX, GCPEX and other

campaigns (e.g., Petäjä et al. 2016; Lubin et al. 2020) with high-

quality coincident multifrequency and microphysical measure-

ments. The additional evaluation would further inform users of

the accuracy and potential biases associated with the NN re-

trieval. Last, the comparison with CloudSat and the opera-

tional algorithms therein would be beneficial for understanding

whether the bias reported in Skofronick-Jackson et al. (2019) and

Casella et al. (2017) has been improved with the NN retrieval.
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APPENDIX A

Derivation of GPM-DPR estimate

Since the GPM-DPR operational algorithm is not trivial to

implement and is not open source, a method to estimate the

FIG. 17. Median profiles of measured and retrieved microphysical parameters from 1509 UTC 3 Dec 2015: (a) measured median

reflectivity from the APR (solid lines) and GPM-DPR (dashed lines) for both Ku (blue) and Ka (red) bands; (b) Dml
retrieved from the

neural network applied to the APR data (APR_NN; blue), retrieved from the GPM-DPR version-6 algorithm (GPM_DPR; red), and

retrieved from the neural network applied to the GPM-DPR data (GPM_NN; black); (c) As in (b), but forNwl
; and (d) the resulting IWC

calculated from Dml
and Nwl

.
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GPM-DPR algorithm is described here. A legacy power-law fit

of the form in Eq. (9) is formed from direct operational output

of the level-2 2A.DPR files (https://doi.org/10.5067/GPM/

DPR/GPM/2A/05). Specifically, four orbital files are chosen

from 2014, 2015, 2016, 2017, and 2018, resulting in 20 total files.

From there, the data are curated by selecting precipitating

profiles (flagPrecip 5 11) and where the near-surface tem-

perature, determined from the 2A.ENV files, is less than 58C.

The temperature threshold is to prevent strong convective in-

stances in the data where riming would be likely. From there,

radar gates are chosen in which the gate temperature is less

than 08C to isolate solid-phase hydrometeors. Figure A1 shows

randomly selected snowfall echoes from the 2A.DPR files.

After the above conditions have been selected, the parameters

in Eq. (10) are fit using the sklearn python package linear re-

gression between the log(IWC) and the log(Ze). The a and

b values can be found in Table 1.

APPENDIX B

Histograms of training data

To provide perspective of the range of data used to train the

neural network, all scattering properties are summarized in

normalized histograms in Fig. B1. The left column contains all

of the ranges of reflectivity at Ku (Fig. B1a), Ka (Fig. B1b), and

W (Fig. B1c) band. The corresponding dual-frequency ratios

between Ku and Ka (Fig. B1d), Ka and W (Fig. B1e), and Ku

and W (Fig. B1f) are found in the right column.
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